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Sedimentary records from California’s Northern Channel Islands and the adjacent Santa Barbara Basin
(SBB) indicate intense regional biomass burning (wildfire) at the Allerosd-Younger Dryas boundary
(~13.0-12.9 ka) (All age ranges in this paper are expressed in thousands of calendar years before present
[ka]. Radiocarbon ages will be identified and clearly marked “C years”.). Multiproxy records in SBB
Ocean Drilling Project (ODP) Site 893 indicate that these wildfires coincided with the onset of regional
cooling and an abrupt vegetational shift from closed montane forest to more open habitats. Abrupt
ecosystem disruption is evident on the Northern Channel Islands at the Allered-Younger Dryas boundary
with the onset of biomass burning and resulting mass sediment wasting of the landscape. These wildfires
coincide with the extinction of Mammuthus exilis [pygmy mammoth]. The earliest evidence for human
presence on these islands at 13.1-12.9 ka ( ~11,000-10,900 'C years) is followed by an apparent 600-
800 year gap in the archaeological record, which is followed by indications of a larger-scale colonization
after 12.2 ka. Although a number of processes could have contributed to a post 18 ka decline in M. exilis
populations (e.g., reduction of habitat due to sea-level rise and human exploitation of limited insular
populations), we argue that the ultimate demise of M. exilis was more likely a result of continental scale
ecosystem disruption that registered across North America at the onset of the Younger Dryas cooling
episode, contemporaneous with the extinction of other megafaunal taxa. Evidence for ecosystem
disruption at 13-12.9 ka on these offshore islands is consistent with the Younger Dryas boundary cosmic
impact hypothesis [Firestone, R.B., West, A., Kennett, ].P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, PH.,
Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, OJ., Goodyear, A.A., Harris, R.S., Howard, G.A.,
Kloosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrah, T., Que Hee, S.S., Smith,
AR, Stich, A., Topping, W., Wittke, J.H. Wolbach, W.S., 2007. Evidence for an extraterrestrial impact
12,900 years ago that contributed to the megafaunal extinctions and Younger Dryas cooling. Proceedings
of the National Academy of Sciences 104, 16016-16021.].

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Abrupt and massive environmental and biotic changes are
evident at the Allered-Younger Dryas Boundary (YDB, 13.0-12.9 ka)
in the archaeological and paleontological records of North America.
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It appears that at least 16 of 35 extinct Late Pleistocene animal
genera have abrupt, terminal occurrences at, or close to, this
boundary (Firestone et al., 2007; Grayson, 2007; Haynes, 2008). The
remaining genera are rare in the Pleistocene record and the avail-
able chronological information is generally insufficient to evaluate
their extinction histories. This is also the case for 19 extinct Late
Pleistocene bird genera (Grayson, 2007). Grayson and Meltzer
(2002) hypothesized that these extinctions were gradual during the
Late Pleistocene and that processes causing the massive extinction
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were temporally and regionally complex and related to the
changing environmental conditions associated with deglaciation.
Animal extinction histories should be complex during such signif-
icant environmental shifts, but the abrupt extinction of significant
numbers of genera/species at ~13-12.9 ka occurred during a time
of more gradual ecosystem processes associated with the last
deglacial episode. A continental scale AMS C dating campaign is
required to test the hypothesis that posits an abrupt environmental
and biotic event. Relatively comprehensive extra-regional data are
in strong support of an abrupt extinction of several Rancholabrean
mammalian taxa including Equus [Horse], Camelops [Camel], and
Mammuthus [Mammoth] (Haynes, 2008), with the best dataset
from Mammuthus indicating that this genus abruptly disappeared
over much of the continent at ~12.9 ka (Haynes, 2008). By this
time most of North American megafauna were extinct, with Bison
spp. a rare survivor that experienced a significant population
bottleneck at ~12.9 ka (Drummond et al., 2005). This appears to
have stimulated genetic change that ultimately led to the appear-
ance of the modern Bison [Bison bison] during the Holocene
(McDonald, 1981). The abrupt termination of multiple genera and
the bottleneck in bison populations at or close to 12.9 ka demands
explanation.

The rapid extinction of many Rancholabrean animals is closely
timed to the Clovis cultural assemblage that abruptly appeared and
disappeared across North America between 13.1 and 12.9 ka
(Waters and Stafford, 2007) and immediately preceded the Younger
Dryas (YD) cooling (Broecker, 2006). Our opinion is that Martin’s
(1967, 2005) long-standing hypothesis that human hunting was
responsible for this extinction (overkill) event is not supported by
the available data. The reasons are that there is a near-absence of
kill sites for many of these genera, including camels and sloths
(Grayson and Meltzer, 2002; Grayson, 2007), the event was rapid,
encompassed numerous animal taxa, and had a large geographic
extent. In addition, increasing evidence for pre-Clovis human
occupations negates an explosive occurrence of people rapidly
expanding throughout the Americas (Dillehay, 1989, 1997; Waters
and Stafford, 2007; Gilbert et al., 2008). The rapid onset of YD
cooling is recorded throughout the Northern Hemisphere, in
equatorial climate records (Haug et al., 2001; Hendy et al., 2002;
Yancheva et al., 2007), and provides another potential explanation
for the abrupt extinction event. The timing of YD cooling is out of
phase with the chronology of Milankovitch forcing mechanismes,
but its severity and rate of onset is comparable to many such
cooling events during the Late Quaternary (Hendy et al., 2002) and
hence by itself does not provide an adequate explanation for
ecosystem disruption and massive extinction. More complex
ecological explanations involving a combination of climate change
and human predation are the most viable (Barnosky et al., 2004) in
the absence of alternative mechanisms, however, based on 97
geoarchaeological sequences across North America, Haynes (2008)
argues for a dramatic environmental event at ~12.9 ka (10,900 '4C
years). He argued that the base on a physically distinctive YD black
layer at 70 of these localities dates to ~12.9 ka and serves as
a stratigraphic marker horizon (Fig. 1)—a thin stratum where Clovis
artifacts and select Rancholabrean fauna occur below, but never
within or above this unique bed (Haynes, 2005, 2008; see also
Firestone et al., 2007).

Magnetic microspherules are concentrated at the base of the
best dated of these distinctive black layers at Murray Springs, AZ
(Haynes, 2008) and in association with an assemblage of
numerous other exotic materials identified in many other terminal
Clovis-age deposits (Firestone et al., 2007). Many of these exotic
materials are found in sediments associated with documented
extraterrestrial impact events (e.g., Cretaceous-Tertiary [K/T]
boundary [Koeberl, 2007]; Tunguska [Longo et al, 1994]).
Although much remains to be learned about this boundary layer,

the co-occurrence of these exotic materials forms the basis of the
Younger Dryas Boundary (YDB) cosmic impact hypothesis
(Firestone et al., 2007). Large cosmic impacts can have major
effects on Earth systems and are known to trigger abrupt climatic
shifts, widespread biomass burning, and animal extinctions
(Alvarez et al., 1980; Wolbach et al., 1985). The recognition of mass
extinction at the K/T boundary attributed to a major cosmic
impact, along with the presence of a significant number of similar
cosmic impact markers identified at the YDB, provide an empirical
basis for hypothesizing that North American animal extinctions at
the end of the Pleistocene had a similar origin. These extinctions
may have been caused, at least in part, by the direct effects of an
cosmic impact (shockwave and heat) and subsequent major and
cascading ecological changes (e.g., regional wildfires, climate
change, vegetation disturbance and shifts). Much of the existing
archaeological, paleontological, and paleoenvironmental data in
North America are not adequate to test the YDB cosmic impact
hypothesis due to sparse geographic occurrences and insufficient
chronological resolution in available records. The apparent
suddenness of the event that occurred at the onset of the YD
requires investigations of very high chronological resolution to
test the hypothesis. A first step in evaluating the YDB cosmic
impact hypothesis is the further analysis of existing stratigraphic
and chronological datasets, removing erroneous radiocarbon dates
that have large error margins (Spriggs, 1989; also see Pettitt et al.,
2003; Waters and Stafford, 2007; contra the approach of Buchanan
et al. 2008) or other problems (e.g., the ‘old wood effect’; Schiffer,
1986; Kennett et al., 2002). Unless the objects of interest are dated
directly (e.g., Pleistocene animal bones, dung, or other biological
remains) stratigraphic context is essential with all sites with
questionable radiocarbon dates or associations removed until
confirmed with modern techniques. Calibration with careful
attention to 'C reservoir problems is essential (Ingram and
Southon, 1996; Kennett et al., 1997), as is careful consideration of
radiocarbon production plateaus and uncertainties in the calibra-
tion curve known to exist during this interval (Muscheler et al.,
2008). The same rigorous criteria expected for defining pre-Clovis
occupations are now required for all terminal Pleistocene strati-
graphic sequences.

It is in this context that we present evidence for the co-occur-
rence of massive wildfire, abrupt vegetation change, Mammuthus
exilis extinction and disruption in human use of California’s
Channel Islands at ~13-12.9 ka. These islands were never con-
nected to the mainland during the Quaternary and thus provide
a unique and detailed record of Proboscidean colonization, bioge-
ography, dwarfism, and extinction in an insular maritime envi-
ronment (Agenbroad, 2002a, 2005). They also provide a long and
well-preserved sequence of human occupation spanning the last
13,000 years (Erlandson et al., 1996, in press; Johnson et al., 2002;
Kennett, 2005; Rick et al., 2005). These records are coupled with
high-resolution climate and environmental records from the
adjacent Santa Barbara Basin (Kennett et al., 1995, 2007; Heusser
and Sirocko, 1997; Kennett and Kennett, 2000; Hendy et al., 2002,
2004). High quality SBB records result from a combination of rapid
sedimentation rates, general lack of bioturbation, a relatively
continuous abundance of climatic/environmental proxies and
proximity to continental influences. The paleontological, archaeo-
logical, and paleoenvironmental records on these islands provide
a unique opportunity to examine M. exilis extinction in the context
of climatically induced environmental change and the arrival of
humans on these islands. We now turn to the existing Late
Quaternary paleoenvironmental sequences for the region and the
archaeological and paleontological records from the Northern
Channel Islands. We then examine the evidence for regional
wildfires at 13-12.9 ka and discuss this within the context of
existing records and the YDB extraterrestrial impact hypothesis.
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Fig. 1. Maps of [A] Western North America [B] Northern Channel Islands showing localities discussed in the text. The general distribution of black sedimentary layers in Western
North America is based on Haynes (2008). The general distribution of Clovis-like fluted points in California comes from Rondeau et al. (2007). Bathymetry surrounding the Northern
Channel Islands was established using the same procedure as Kinlan et al. (2005), but temporal assignments for Late Quaternary Santarosae shorelines were made based on more
modern sea-level records (Fairbanks, 1989; Bard et al., 1990, 1996; Hanebuth et al., 2000). Localities identified on the Northern Channel Islands are: 1 =AC-003; 2 = Arlington
human locality [CA-SRI-173]; 3 = Daisy Cave [CA-SMI-261]; and 4 = Cardwell Bluffs (maps by Jacob Bartruff).

2. Late Quaternary paleoenvironmental change

High-resolution Late Pleistocene environmental sequences are
limited on the Northern Channel Islands, but the adjacent Santa
Barbara Basin (SBB) offers extraordinarily sensitive records of global
climate change and associated regional environmental responses on
interannual through glacial/interglacial timescales (Kennett et al.,
1995, 2007; Behl and Kennett, 1996; Heusser and Sirocko, 1997;
Heusser, 1998; Cannariato et al., 1999; Hendy and Kennett, 1999;
Kennett and Kennett, 2000; Hendy et al., 2002, 2004; Nederbragt
and Thurow, 2005; Graham et al., 2007; Sarnthein et al., 2007;
Nederbragt et al., 2008). Well-preserved sediments in the center of
this basin record climatic variability closely correlated with

Northern Hemisphere and broader climate history as documented in
the Greenland ice core (e.g., GISP2 6'80; Hendy et al, 2002).
Decreased ventilation leading to varved sediments occurs during
warm episodes (Belling [14.7-14.1 ka], Allered [14-12.9 ka], and
earliest Holocene [11.6-10.5 ka]) while increased ventilation and
resulting non-laminated (bioturbated) ocean sediments typify cool
intervals (e.g., Last glacial Maximum [LGM; 18 ka], Older Dryas
[14.1-14 ka], Younger Dryas [YD] [12.9-11.6 ka]; Behl and Kennett,
1996). Planktonic foraminiferal 6'%0 values accord well with these
glacial-interglacial cycles and also record multiple, abrupt sub-
millennial-scale cool and warm excursions throughout the Late
Quaternary (Hendy et al., 2002), often of similar magnitudes or more
extreme than the abrupt cooling that marks the onset of the YD.
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The Late Quaternary age model for ODP Site 893 was established
based on a new suite of AMS 'C dates (Sarnthein et al., 2007;
Fig. 2). Radiocarbon dating was performed on mixed planktonic
foraminifera. A regional reservoir correction (AR) of 233 4 60 years
has been assumed (Ingram and Southon, 1996). From the 51 '4C
dates between 9.5 and 20 ka, 36 dates were averaged, and 12 dates
(including, dates within radiocarbon plateaus) were excluded from
the age model. The remaining dates were used to generate 21
calibrated calendar year ages (including 11 that represent average
dates). Calibrated calendar year ages were obtained using the full
probability method of calendar age calibration (Telford et al., 2004).
Reservoir-corrected C dates younger than 22 Cka were cali-
brated using CALIB 4.0 (Stuiver et al., 2004) and the C calibration
dataset MARINEO4 (Hughen et al., 2004).

Sedimentary, faunal, and 60 records in SBB generally show
cohesive warm-cool-warm cycles during the Allered, YD and Early
Holocene, respectively (Fig. 3). The Allerad-YD transition is marked
by a sharp change from laminated to bioturbated sediments (Behl
and Kennett, 1996) with non-laminated sediments persisting
through the YD, estimated to be ~1300 years in duration based on
an AMS '¥C chronology, varve counting, and correlation with the
GISP2 ice core record (Kennett and Ingram, 1995a,b; Hendy et al.,
2002; Nederbragt and Thurow, 2005). Planktonic foraminiferal 6'80
isotope and faunal assemblages clearly show: 1) Bolling and Allerad
warm episodes (separated by the Older Dryas); 2) the YD cool
episode, and 3) the Early Holocene (Hendy et al., 2002). Planktonic
foraminiferal 680 records of thermoclinal (Neogloboquadrina
pachyderma) and surface (Globigerina bulloides) water forms are
consistent with this hypothesis and indicate abrupt cooling at the
onset of the YD. The Bolling-Allerad warm episode registers in both
planktonic foraminiferal species. The onset of the YD is represented
by a 19, increase in 680 (Hendy et al., 2002).

Marine faunal assemblages also indicate cooler sea surface
temperatures (SST) during the YD. The ratio of sinistral (left coiling)
to dextral (right coiling) in N. pachyderma is highly sensitive to SSTs
(summarized in Fisler and Hendy, 2008). Sinistral N. pachyderma
forms are favored with a poorly developed thermocline (high-
upwelling) and SST < 10 °C. The high abundance of the dextral
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Fig. 2. Age in calendar years BP (ka) versus core depth (corrected cm BSF) for ODP Site
893. Dates were generated using planktonic foraminiferal carbonate (x’s) (Roark et al.,
2003; Sarnthein et al., 2007). Dates for the age were also generated using the average
of multiple dates (crosses). Dates that were used in the linear interpolation of the age
model are shown as crosses. Shaded areas highlight globally recognized 'C age
plateaus (Sarnthein et al., 2007).

coiled morphospecies through much of the Bglling-Allered indi-
cates SST>10°C, a well-developed thermocline, and intensive
upwelling of nutrient-rich water. The Bglling is widely recognized
as an interval of unusually high marine productivity in the North
Pacific (Hendy et al., 2004). Dextral/sinistral ratios are high in
Bolling-Allerod and Early Holocene assemblages and the YD is
marked by an abrupt decrease in this ratio indicating SST < 10 °C.
This is consistent with the 680 records for this thermoclinal species
indicating cold SSTs during the YD. Planktonic foraminiferal
abundance decreased during the YD. Globigerina quinqueloba
dominated the assemblage during the YD (40-80%), while G. bul-
loides is rare in comparison to Allered and Early Holocene assem-
blages. These species are surface dwellers that thrive in nutrient-
rich water, however, G. bulloides does not host photosynthetic
endosymbionts and consequently has a higher prey requirement
(Ortiz et al., 1996). Low foraminiferal abundance and high G. quin-
queloba frequencies during the YD indicate a decrease in size and/or
frequency of prey perhaps as a result of reduced upwelling (Fisler
and Hendy, 2008). Dinoflagellate cyst production increased during
the Bolling/Allerod and diminished during the YD, and is also
consistent with reduced upwelling during the cool event
(Pospelova et al,, 2006). Coccolith assemblages change more
gradually across the Allersd-YD boundary and during the YD they
are most similar to the LGM (MIS2). This observation is consistent
with other proxies suggesting cool YD SSTs (Nederbragt et al.,
2008). An increase in Florisphaera profunda in YD assemblages
(much higher than LGM) suggests that coccolithophorid production
occurred during seasonal chlorophyll maxima associated with
stratification of the water column (Nederbragt et al., 2008, p. 10).
Late Quaternary changes in sea level altered the size and
configuration of the Northern Channel Islands between 19.5 and
10 ka (and after), increasing the width of the channel separating
these islands from the mainland (Junger and Johnson, 1980). The
distribution of highly productive reef habitat and associated kelp
forests also changed during this interval (Kinlan et al., 2005), where
tectonic influences on eustacy (uplift or subsidence) are relatively
minor compared to glacio-eustatic effects during this interval. The
Northern Channel Island platform is tilting, subsiding in some
locations and uplifting in others (Sorlien, 1994). Fault slip and
warping on Santa Rosa and Santa Cruz Islands are similar; both
faults are oriented east-west and dipping steeply to the north
(Pinter et al., 2001, 2003). Late Quaternary uplift has occurred north
of these faults with left slip rates between 0.75 and 1 mm/year and
vertical uplift of 0.1-0.2 mm/year (<2m in 13,000 years; Pinter
et al., 2001, p. 9). During the LGM, sea level was ~120 m below the
current high-level stand (Fairbanks, 1989; Siddall et al., 2003). The
four Northern Channel Islands were amalgamated to form one large
landmass known as Santarosae (Orr, 1968; Fig. 1b). A land bridge
between the mainland and Santarosae did not exist during the
Quaternary; however, the distance from the eastern end of the
island to the mainland was reduced to ~7 km at the LGM. Eustatic
rises in sea level are not well constrained between 19.5 and 14.5 ka,
but a gradual rise of ~25 m is suggested by records in the Indo-
Pacific (Bard et al., 1990; Fig. 3f, Table 1). This would have caused
a ~17% (391 km?) reduction in the size of Santarosae, affecting the
coastal lowlands that may have been the most productive habitat
for animal populations (Agenbroad, 2002b). A more rapid rise of
15 m is evident between 14.5 and 13.4 ka. Sea level was ~75 m
below the current high stand at the beginning of the YD (~13-
12.9 ka) and gradual increases (~30 m) are evident through the YD
and Early Holocene ( ~12.9-10 ka) resulting in another reduction in
land area of roughly 16% (304 km?). In general, these data are
evidence for step-like decrease in island size and increased isola-
tion from the mainland superimposed on more gradual trends
between 19.5 and 10 ka. Potential reef area surrounding the islands
expanded between 19.5 and 13.5ka, and contracted gradually
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Fig. 3. Comparison of marine records in Santa Barbara Basin with the Greenland Ice Sheet. [A] The relative abundance of the planktonic foraminifera G. bulloides (Hendy et al., 2002),
[B] the Bioturbation Index (Behl and Kennett, 1996), [C] the ratio of the planktonic foraminifera dextral to sinistral coiled N. pachyderma, and [D] the 6'80 record of N. pachyderma
(Hendy et al.,, 2002). [E] The Greenland Ice Sheet (GISP2) 680 record (Stuiver and Grootes, 2000) and [F] sea-level records from the Sunda Shelf (open triangles; Hanebuth et al.,
2000), Barbados (gray circles; Fairbanks, 1989; Bard et al., 1990) and Tahiti (black squares; Bard et al., 1996) with the average sea-level change of these locations resampled every 100
years (dashed gray line). The distance to the mainland from the islands (solid line), [H] the areal extent of the islands (dashed line) and [I] the areal extent of reefs (gray shaded area)
through time. Gray dashed line marks the initiation of the Younger Dryas cooling event in Greenland and Santa Barbara Basin, an event that is considered to be synchronous.

during the late Allergd and YD (13.5-12 ka). The Northern Channel 3. Late Quaternary archaeological records

Islands separated sequentially at ~10.9 ka (Anacapa), ~9.3 ka

(Santa Cruz) and ~9 ka (Santa Rosa-San Miguel); these estimates A human presence on Santarosae at ~13ka is indicated by
differ from those of Kinlan et al. (2005; also see Porcasi et al., 1999) skeletal remains—two partial femora and a patella—at the
due to the use of more recent estimates of sea-level change. Arlington Springs site on Santa Rosa Island (CA-SRI-173, Johnson
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Table 1
Estimated areal extent of the Northern Channel Islands during the Late Quaternary
and related changes in reef size and distance to mainland.

Age (ka) Bathymetry (m)  Area (km?) Reef area (km?) Mainland (km)?
9.02 -30 819.13 327.33 13.00
9.35 -35 893.25 313.72 12.00
9.72 —40 951.01 322.95 12.00
10.22 —45 1013.01 328.68 11.80
10.57 -50 1083.15 339.82 11.50
10.84 -55 1149.07 362.14 11.00
11.44 -60 1208.42 438.86 10.50
11.89 —65 1276.62 533.89 9.70
12.63 -70 1345.78 563.65 9.20
13.12 -75 1424.08 599.10 9.00
1343 -80 1512.00 608.67 8.70
13.58 -85 1649.72 537.11 8.50
13.80 -90 1816.69 439.34 8.20
14.51 -95 1910.44 390.04 8.00
15.28 —100 2026.16 314.66 7.80
15.90 —-105 2125.05 254.99 7.60
17.11 —-110 2194.44 215.22 7.40
18.85 -115 2256.79 178.88 7.30
19.50 -120 2301.36 157.16 7.30

2 Estimated distance from eastern Anacapa to adjacent mainland.

et al., 2002; Fig. 4). Orr (1968) discovered the skeletal remains in
1959, buried 11 m below the modern ground surface in a filled
arroyo sequence now bisected by the main Arlington Canyon
drainage. Several direct dates are available for this skeletal material
(Johnson et al., 2002), the most reliable of which is an AMS '#C date
on XAD-purified collagen (CAMS-16810, 10,960 & 50 '%C years or
13-12.9 ka; Table 2). A detailed stratigraphic analysis of the sedi-
ments surrounding these bones is consistent with this chronology
and confirms an age of 13-12.9 ka (Johnson et al.,, 2002, 2007;
Agenbroad et al., 2005). These data are evidence that humans were
present on the Northern Channel Islands when contemporary
Paleoindian peoples were well distributed throughout North
America and used a wide diversity of available resources including
the hunting of large game animals with Clovis spear points
(Haynes, 2005; Waters and Stafford, 2007). Clovis points and
related technology, although found on the adjacent mainland and
throughout much of North America (Anderson and Faught, 2000;
Erlandson et al., 2007; Rondeau et al., 2007), have not been found
on the Northern Channel Islands, but the potential overlap between
the most recently dated M. exilis skeleton and the Arlington skeletal
material suggests that humans may well have encountered these

animals at this early date. Regardless, early human presence on
these islands provides unequivocal evidence for seaworthy boats
and sufficient skill to safely navigate the Santa Barbara Channel
(Erlandson et al., 2007).

An apparent 600-800 year gap exists between the age of the
Arlington Springs locality and the next evidence for human occu-
pation at ~12.2 ka (Fig. 4). Evidence for human occupation at
12.2 ka occurs at Daisy Cave and Cardwell Bluffs near the east end of
modern San Miguel Island. The recently discovered Cardwell Bluffs
locality contains several large quarry/workshop sites that have
produced hundreds of chipped stone bifaces, including numerous
crescents and stemmed projectile points associated with red
abalone shells and other well-preserved shellfish remains dating
between 12.2 and 11.6 ka (Erlandson et al., in press). The earliest
unequivocal evidence for human occupation at Daisy Cave (12.2-
11.6 ka) consists of a handful of Monterey chert and siliceous shale
artifacts associated with red abalone and other marine shell frag-
ments from the adjacent rocky intertidal zone (Stratum G;
Erlandson et al., 1996; Erlandson, 2007). This short-duration
deposit, likely representing a single visit, occurs at the base of
a well-stratified sequence that shows consistent and repeated use
of the cave starting in the terminal Pleistocene. Early Holocene
deposits contain a diverse tool assemblage including projectile
points, bone fish gorges, shell beads (Olivella biplicata), sea grass
cordage, and chipped stone debris mixed with the remains of fish,
sea mammals, birds, and shellfish (Erlandson, 2007; Erlandson
et al, 2007). Increased use of Daisy Cave coincides with the
occurrence of many other San Miguel and Santa Rosa sites that
contain evidence for early maritime adaptations (Rick et al., 2005).

4. Island mammoth extinction

Paleoenvironmental trends and the human colonization history
provide the ecological context for the extinction of M. exilis on
Santarosae. Pleistocene faunas on this island were of low diversity
compared with the diverse fauna documented at Rancho La Brea
just across the Santa Barbara Channel on the California mainland
(Marcus and Berger, 1984; Coltrain et al, 2004). Mammoths
(Mammuthus columbi) colonized these islands during the Late
Quaternary, probably well before 47 ka, and perhaps during one of
the low sea-level stands prior to this time when the swimming
distance was relatively short. A more diminutive Mammuthus
species (M. exilis), about the size of a large bison and endemic to

Table 2

Late Quaternary paleontological and archaeological sites from the Northern Channel Islands.

Lab # Material dated Provenance e + Reference

Beta-92053 Charcoal w/M. exilis Southwest Coast, Santa Rosa Island 18,130 70 Agenbroad, 2002b, p. 523
Beta-96610 Charcoal w/M. exilis Southeast Coast, Santa Rosa Island 13,770 60 Agenbroad, 2002b, p. 523
CAMS-71697 M. exilis (Collagen)® Northwest Coast of Santa Rosa Island 11,030 50 Agenbroad et al., 2005, p. 5
Beta-133594 Charcoal w/M. exilis Northwest Coast of Santa Rosa Island 11,010 70 Agenbroad et al., 2005, p. 5
CAMS-16810 Human Skeleton® SRI-173, Arlington Springs, 11 m below surface 10,960 80 Johnson et al., 2002, p. 543
Beta-52360? Tegula SMI-261, E-6: Stratum G 10,600 70 Erlandson et al.,, 1996
Beta-14660* Haliotis rufescens SMI-261, E-6, Stratum G 10,700 90 Erlandson et al., 1996
CAMS-33369 Charred twig SMI-261, 94-E6, Stratum G 9580 60 Erlandson et al., 1996
CAMS-14366 Charred twig SMI-261, Cave A, 26-30 cm 9180 60 Erlandson et al., 1996
CAMS-33375 Marine Shell SMI-261, Col. E-6, F-G transition 9620 70 Erlandson et al., 1996
0S-27943 Mytilus californianus SMI-522, Base of midden 9450 70 Erlandson and Rick, 2002
0S-31684 Mytilus SMI-548, Area A: 0-5 cm 9070 55 Erlandson et al., 2004
0S-34804 M. californianus SMI-604, Probe: 25 9440 50 Rick et al., 2001
Beta-145308 M. californianus East Locus 8920 90 Erlandson et al.,, 2007
0S-44638 M. californianus SMI-608 9200 50 Erlandson et al., 2005
0S-28282 M. californianus SMI-610, Sea Cliff: 0-10 9080 60 Erlandson et al., 2007
Beta-47625° Haliotis rufescens SRI-6, Component 1 8800 80 Erlandson et al., 1999

2 Standard radiocarbon—'3C/"2C adjusted.
b XAD-purified collagen.
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Fig. 4. Available chronological information for M. exilis and archaeological datasets from the Northern Channel Islands. Uncalibrated radiocarbon dates and provenience information
are provided in Table 2. All radiocarbon dates were calibrated in OxCal v3.10 (Bronk Ramsey, 1995, 2001) using the IntCal04 calibration curve for terrestrial samples (Reimer et al.,
2004). A regional reservoir correction (AR) of 233 + 60 years was applied to all marine shell dates (Ingram and Southon, 1996). Reservoir-corrected 'C dates calibrated using the
MARINEO4 dataset (Hughen et al., 2004). Five dates from the lowest dark layer were used to establish the Santarosae wildfire 11,060 + 40 'C years (illustration by Rusty Van

Rossman).

Santarosae, was favored by natural selection due to isolation,
apparent lack of predators, lower carrying capacity and reduced
food supply (Agenbroad, 2002a) and appears to have been the
dominant species by the end of the Pleistocene.

Hundreds of M. exilis bones have been collected and curated
during the last century, and at least 140 new fossil localities were
identified on Santa Cruz, San Miguel, and Santa Rosa during
a recent comprehensive study (Agenbroad, 2002b). The majority of
these bones were found out of primary context and within alluvial
deposits. Radiocarbon dates on associated charcoal range to the
limits of the ™C dating technique at ~47 ka. One nearly complete
M. exilis skeleton found on the north coast of Santa Rosa was
directly dated to ~ 16.3-13.9 ka (Agenbroad, 1998). Finally,
a thoracic vertebra (M. exilis) from the northwest coast of Santa
Rosa Island was directly dated with modern techniques 11,030 + 50
14C (CAMS-71697, XAD-purified collagen; Fig. 4, Table 2). The
vertebra was found in the upper marine terrace and is associated
with a charcoal date of 11,010 = 70 C (Beta-133594). Therefore,
a calibrated age of 13-129ka is presently considered to be
a terminal age for M. exilis on the island (Agenbroad et al.,
2005)—the onset of the YD.

5. Wildfire and abrupt ecosystem disruption

Sedimentary records from the Northern Channel Islands and
SBB (ODP Site 893) indicate intense regional wildfires and abrupt
ecosystem disruption at the Allerad-YD transition (~13-12.9 ka).
This time interval coincides with a last possible occurrence of M.
exilis and marks the beginning of an apparent 600-800-year gap in
the archaeological record, both of which may be indications of

ecosystem disruption on Santarosae. Evidence for periodic fires
during the LGM is evident in sedimentary records from San Miguel
Island (Johnson, 1972, 1977) and charcoal records from Soledad
Pond and Abalone Rocks Marsh, both on Santa Rosa Island, indicate
that small scale grass/brush fires were part of island ecology
throughout the Holocene with increasing intensity in the Late
Holocene and Historic Periods (Anderson, 2002). Here we present
evidence for intense biomass burning of conifers and subsequent
mass wasting of the landscape at 13-12.9 ka in Arlington Canyon
(Santa Rosa Island, AC-003). This expands and complements
preliminary evidence for ~13 ka wildfires discovered on San
Miguel Island, the next island west of Santa Rosa (Firestone et al.,
2007). Evidence for these wildfires is from the well-dated paleon-
tological sediments at Daisy Cave (Stratum I, CA-SMI-261), which
underlie the archaeological deposits that began accumulating at
~12.2 ka (Erlandson et al., 1996). Pinter and Anderson (2006) also
have proposed Santarosae Island-wide “mega-fires” and landscape
transformation at ~ 13 ka.

The AC-003 section (UTM: 10S 0762524/3764532, Fig. 1) is
located ~1.35 km from the modern coastline and 1.2 km upstream
from the Clovis-age Arlington locality. Arlington Canyon cuts
through a series of uplifted Quaternary terraces that dominate the
landscape north of the Santa Rosa Island fault and are well known
for containing M. exilis remains (Orr, 1968; Agenbroad, 2002b).
Holocene alluvial and colluvial deposits are exposed throughout
Arlington Canyon, but AC-003 was selected because preliminary
work by G. James West indicated that the basal deposits in the
exposed sequence dated to the Allerod-YD transition and appeared
similar in character to the dark sedimentary layers described by
Haynes (2008) across much of North America (Johnson et al., 2007).
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Fig. 5. Stratigraphic section of AC-003 profile showing lithology, calibrated and uncalibrated radiocarbon dates, % organic carbon, and detrital carbon. These data are presented in
Table 3 along with additional information (e.g., inorganic carbon, glass-like carbon). Charcoal samples of 1 cm> were taken from each level using water displacement and placed in
plastic cups. Ten milliliters of sodium hexametaphosphate were added to each sample to disaggregate the sediment and samples were left to soak for 24 h at room temperature.
Samples were gently washed through a mesh sieve of 125 pm and the residue was transferred to a gridded Petri dish. All charcoal particles in the samples were identified and tallied
under a stereomicroscope at 30x magnification. Samples for loss-on-ignition were approximately 1 g and were taken from each level, placed in ceramic crucibles, and dried at 80 °C
for 24 h. Samples and containers were weighed and combusted at 550 °C for 1 h and at 900 °C for 2 h. Weight loss after the 550 °C combustion was used to calculate the percent
organic carbon content of the samples; weight loss after 900 °C combustion was used to calculate the percent carbonate content of the samples. Other forms of detrital carbon (e.g.,
carbon spherules and “elongates”) were extracted using methods outlined in Firestone et al. (2007). ESEM images of a carbon spherule from the lower dark sedimentary layer (Lorry

I. Lokey Nanoscience Laboratories, University of Oregon).

The section is exposed on the western side of the canyon at the base
of a steep incline extending down from the Quaternary terrace
above.

Fig. 5 shows the lithostratigraphy of the AC-003 section in
addition to chronological information, % organic and inorganic
carbon, charcoal concentration, and detrital carbon morphological
data (also see Table 3). The basal deposits of this section were

exposed in 2001, but largely covered with modern alluvium in
2007, when we exposed and sampled the profile. The exposed 5 m
thick sequence rests upon a basal gravel that is at modern stream
level and is largely covered with alluvial sands and gravels. A
distinctive organic carbon rich, dark blue-gray silty mud (44 cm
thick) directly overlays the basal gravel. The gleyed silty mud is
capped with a coarse cobble channel lag deposit (~60 cm thick)
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Table 3
Organic, inorganic, and other detrital carbon from AC-003.
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Sample # cmbs % Organic Charcoal #/cm? Herbaceous (%) Detrital carbon
Spherules (#/kg) Elongate (#/kg) Glass-like (g/kg)
AC318 95-99? 1.870 115 7.83 0 192 0.000
AC319 115-120? 2.080 2 0.00 0 0 0.000
AC320 122-125 2.044 0 0.00 0 0 0.000
AC321 145-148 2.601 0 0.00 0 0 0.000
AC322 166-169 3.870 0 0.00 0 0 0.000
AC323 179-183 2175 18 0.00 0 0 0.000
AC324 195-198 1.991 413 8.72 0 23 0.001
AC325 215-217 3.459 131 0.00 0 112 0.001
AC326 226-229 1.920 31 0.00 0 30 0.001
AC327 238-241 2437 2 0.00 0 0 0.000
AC328 245-248 1416 22 0.00 0 31 0.001
AC329 267-270 1.688 76 132 0 66 0.000
AC330 297-300 2.838 65 0.00 0 0 0.001
AC331 340-343 1.769 5 0.00 0 0 0.000
AC332 383-386 1.648 13 0.00 0 18 0.000
AC333 392-396 3.583 261 0.00 0 767 0.001
AC334 403-406 2.959 430 0.23 0 173 0.001
AC335 413-416 2.785 0 0.00 0 0 0.000
AC348 459-464 3.025 51 0.00 8 42 0.001
AC347 464-469 3.577 58 0.00 31 81 0.001
AC346 469-475 3.075 132 0.00 68 193 0.001
AC345 475-480 3.929 102 0.00 13 113 0.001
AC344 480-485 3.720 148 0.00 190 264 0.001
AC343 485-491 4472 849 0.24 85 1412 0.001
AC342 491-493 8.719 435 6.90 38 0 0.000
AC341 493-498 4.069 258 1.55 166 373 0.001
AC340 498-503 4.310 268 0.37 274 714 0.001
2 Profile 2.

and a second dark layer (20 cm thick) consisting of finely laminated
dark gray to black sandy silt. The upper dark layer is also organic
carbon rich and contains charcoal and charred tree branches up to
5 cm in diameter. Intense wildfire evidence is also indicated by the
presence of carbon spherules (400-1500 um) in the lowest dark
layer (see Fig. 5). These spherules occur widely in the YDB layer in
North America and have also been found in surficial sediments
associated with intense coniferous forest crown fires (Firestone
et al., 2007). Elongated carbon forms found in a number of levels in
the sequence have similar surface features to the carbon spherules.
Both carbon forms have (1) the appearance of melted and charred
organic matter, (2) a moderately glossy shell unlike that of charcoal,
and (3) interior vesicles that are typically a few micrometers in

diameter. However, there are at least three important differences
between the two carbon types. Carbon elongates are not spherical,
but are approximately 2-3 times longer than they are wide, they
have a much coarser spongy interior cellular structure, and they are
found throughout the sequence whereas carbon spherules occur
only in the lowest black layer. The remainder of the sequence
consists of alluvial sands and gravels and includes additional
charcoal-rich layers. Charcoal layers in the upper section are
thinner and dispersed and do not form a distinctive black layer as
with the lowest deposits.

AMS 'C dates for the lower black organic carbon-rich layers
suggest that they accumulated rapidly at ~13.0-12.9 ka (Table 4).
Five of the AMS 'C dates for the lower black layer are slightly older,

Table 4

Radiocarbon dates from the AC-003 stratigraphic section.

Lab # Depth (cm) Lithological unit? Material dated l4c + Cal.c age (BP)
UCIAMS-47235 95-99 Unsorted sand and cobbles (alluvial gravels) Charcoal 11,040 30 13,060-12,890
UCIAMS-47236 179-183 Gray-medium sand-faint dark layers Charcoal 12,095 40 14,060-13,820°¢
UCIAMS-47237 215-217 Black silty clay Charcoal 10,895 35 12,915-12,830
UCIAMS-47238 267-270 Gray sand w/laminations (abundant charcoal) Charcoal 11,105 30 13,100-12,930
UCIAMS-47239 392-396 Finely laminated dark gray to black silt Charcoal 11,105 30 13,100-12,930
UCIAMS-42816 403-406 Finely laminated dark gray to black silt Wood" 11,095 25 13,090-12,930
UCIAMS-36308 464-469 Blue-gray mud/silt Wood 11,095 25 13,090-12,930
UCIAMS-36307 469-475 Blue-gray mud/silt Wood 11,070 25 13,070-12,910
UCIAMS-36306 485-491 Blue-gray mud/silt Wood 11,375 25 13,310-13,180f
UCIAMS-36959 480-485 Blue-gray mud/silt Charcoal 11,075 30 13,080-12,910
UCIAMS-36960 480-485 Blue-gray mud/silt Glassy carbon 11,185 30 13,190-12,980"
UCIAMS-36961 480-485 Blue-gray mud/silt Carbon sphere 11,440 90 13,470-13,120"
UCIAMS-36962 480-485 Blue-gray mud/silt Carbon Brecchia “elongate” 11,110 35 13,110-12,930"
Beta-161032 480-485 Blue-gray mud/silt Wood (yellow pine-Diploxylon)? 10,860 70 12,940-12,780
UCIAMS-36305 493-498 Blue-gray mud/silt Wood 11,235 25 13,220-13,080f
UCIAMS-36304 498-503 Blue-gray mud/silt Wood 11,020 25 13,040-12,880

¢ See Fig. 4 for stratigraphic position.

Large log in stratum (outer portion sampled).

2 sigma, IntCal04.

Original sample collected by G. James West.

Rejected-out of stratigraphic sequence.

f Not included in average age of lowest stratigraphic unit due to “old wood” effect.

b
c
d
e
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Table 5

Raw, percent and pollen concentration values for AC-003 sediments.

Depth (cmbs) % 245 % 394 % 401 % 445.5 % 447.5 % 458 % 460 %
Pinus 11 15 43 37 98 38 65 41 37 29 62 38 49 26
TCT* 38 51 45 39 130 50 53 33 73 57 80 49 120 64
Quercus 13 17 12 10 12 5 6 4 4 3 2 1 0 0
Juglans 0 0 0 0 0 0 0 0 1 1 0 0 0 0
Rhus 1 1 2 2 0 0 2 1 0 0 2 1 1 1
Rhamnaceae 1 1 3 3 0 0 5 3 2 2 3 2 0 0
Rosaceae 4 5 0 0 2 1 10 6 3 2 1 1 2 1
Artemisia 1 1 0 0 1 < 2 1 0 0 0 0 1 1
Aster Hi 0 0 0 0 2 1 13 8 0 0 2 1 0 0
Aster Low 1 1 4 3 4 2 0 0 1 1 5 3 5 3
Liguliflorae 0 0 1 1 0 0 1 1 0 0 1 1 0 0
Poaceae 5 7 3 3 5 2 0 0 1 1 2 1 5 3
Chenopodiaceae 0 0 0 0 6 2 3 2 3 2 3 2 1 1
Polygonaceae 0 0 1 1 0 0 0 0 2 2 0 0 2 1
Eriogonium 0 0 1 1 1 ¢ 0 0 0 0 0 0 1 1
Apiaceae 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Salix 0 0 2 2 2 2 0 0 0 0 1 1 1 1
Cyperaceae” 7 6 0 0 2 1 0 0 0 0 0 0 1 1
]uncusb 28 25 0 0 6 0 3 2 4 3 0 0 0 0
Isoetes 0 0 0 0 0 0 0 0 0 0 1 1 2 1
Unkn/undiff 119 52 105 47 131 33 74 31 73 36 63 28 129 40
Grains/cc 5155 26,530 29,480 26,676 10,393 172,626 86,313

@ Juniperus-Cupressus.
b Qutside pollen sum.
¢ Present <1%.

but there is no stratigraphic correlation and they all fall within the
expected range if the pith wood of old trees burned in a wildfire.
Conifer forest (Pinus and Juniperus—Cupressus) partly covered the
landscape in the latest Allergd (13-12.9 ka) according to the pollen
evidence (Table 5), an observation consistent with pollen and
macrobotanical evidence from Santa Cruz and San Miguel Islands
(Chaney and Mason, 1930; Fergusson and Libby, 1964; Johnson,
1977; West, 1994; Anderson, 2002). Biomass burning at 13-12.9 ka
was followed by erosion with sediments containing charcoal, wood,
and detrital carbon filling the channel. This organic carbon-rich
dark layer was then rapidly buried and preserved by a series of
mass sediment wasting events of a denuded early YD landscape.
Pollen grains are poorly preserved, highly eroded and corroded,
and have been reworked in the upper deposits in this section. The
upper 4 m of the deposit also date to between 13 and 12.9 ka
indicating periodic fires and mass sediment wasting of the land-
scape in close succession in the early YD or rapid redeposition of
material from the lowest burn layer in subsequent mass wasting
events. If the latter, then the upper diffuse charcoal layers are not
a proxy for fire activity, but a marker of sediment input from parts
of the watershed burned at the YDB and deposited soon after this
event during wet conditions promoting erosion. If the former, then
the fires were clearly less intense and derived from already dead
materials on the landscape. Regardless, it is clear that sediments
accumulated rapidly during the early YD at this location after
12.9 ka and then stopped. This indicates that the channel incised
soon after this catastrophic event, trapping the stream in the
canyon for much of the YD and Holocene. The stratigraphic and
chronological evidence from AC-003 clearly suggest mass sedi-
ment sediment wasting of the landscape in the wake of intense
biomass burning. Only modest evidence for fire during the YD is
evident in the nearby Soledad Pond sequence, a record that begins
at ~12.5 ka and is notable for the virtual absence of conifer pollen
and the dominance of non-arboreal plant taxa (e.g., sunflower
|Asteraceae], coyote brush [Baccharis]), suggesting that the transi-
tion to non-arboreal vegetation on Santarosae was rapid (Ander-
son, 2002, p. 10)

Evidence for intense wildfire and abrupt ecological disruption
on the Northern Channel Islands is consistent with the vegetation

and charcoal records from SBB ODP Site 893 (Heusser, 1995, 1998;
Heusser and Sirocko, 1997), the longest and most continuous
available for the Santa Barbara Channel region (Fig. 6). Pollen
assemblages reflect vegetation changes on the adjacent coasts.
These pollen records accumulated in Santa Barbara Basin sedi-
ments via eolian and water transport. This pollen spectrum is
dominated by pine (Pinus) and juniper-cypress (Juniperus-
Cupressus) during the LGM, and these conifers persisted in the
region throughout the Bolling-Allerad. Oak [Quercus] woodlands
gradually expanded in the region after 16 ka suggesting increas-
ingly warm, seasonally dry conditions during the Allerad. The onset
of the YD closely correlates with a major abrupt decline in the
abundance of Juniperus-Cupressus pollen suggesting that these
trees were abundant regionally before, but not after, ~13-12.9 ka.
Spikes in Pinus pollen during the early YD, after major reductions in
Juniperus-Cupressus, suggest that it played a successional role in
southern California coniferous forests (Heusser and Sirocko, 1997,
pp. 243) and soon also diminished. This major reduction in the
montane forest vegetation corresponded with a distinct increase in
grass and herbs (mainly from the Asteraceae family), suggesting
a regional shift to more open habitats dominated by grasslands,
coastal sage, and chaparral communities with dispersed stands of
oak; vegetation that dominates in the region throughout the YD
and Holocene (Heusser, 1998). Range restrictions in Juniperus—
Cupressus are unlikely a product of YD cooling given the abundance
and extent of these taxa during the LGM. The YD is generally
considered to be a dry interval in western North America relative to
the Allerad wet period (Allen and Anderson, 1993; Broecker, 1994;
Benson et al., 1996). Gradual increases in oak pollen starting at
16 ka suggest that seasonally dry conditions were developing and
were in place by the YD. Pinus events evident in the early YD
indicate strong winter monsoon rains and dry, hot summers
(Heusser and Sirocko, 1997, pp. 244). This is consistent with other
western North American evidence that conditions at the Allerad-
YD boundary were seasonally wet (Haynes, 2008), at least during
the early YD.

The abrupt reduction in conifers and the shift to more open
habitats regionally correlates with the most extreme pollen
minima and charcoal maxima of the last 25,000 years in ODP Site



2538 D.J. Kennett et al. / Quaternary Science Reviews 27 (2008) 2528-2543

Age (calendar ka)

11 12 13

\\\\\I\\\\\\\\\I\\\\\\\\\I\\\\\\\\\I\\\\\\\\\I\\\\\\\\\I\\\\\\\\\I\\\\\ 40

Gramineae/Cyperaceae/
Compositae

60 4 &
o X °
2% w0t
E n (@]
6 2 20
=2
0 _Ch |
_n & _Charcoal:
0.5 Pollen
= Ratio
[11]
a 07
o
>
é 0.5
o
2 14
w
L
S 15
L
x
c
8 24
o
2.5 -
M"l‘ Wl  c1sP2Nos
| il M
I I
—_ ALY ‘ M |
% ’ )
S -34 4 ‘
 JF
s
o 87 Allerad
2«; - Younger
E -38 -{Early Dryas
n _Holocene
o
'g -40
© -
- 52
S 42 a4
S
o

1" 12 13

15
0 T
(]
20 g
10 2
0
]
o g
[ o
5 o
8 1.5 80
'U-.I
Juniperus/ 1. 29
Cuppessus gg’
o
05 8§
1=
0
Q
@©
V] — 150
<
g L
S i o)
- g
4
ﬂ - 83
100 ~3
- v Q
5@
Il i g
\l \,‘ | T
(AL N
m L 50
2 GISP2
5 o)
o
15 16 17

Age (calendar ka)

Fig. 6. Comparison of pollen records from Santa Barbara Basin with climate records from the Greenland Ice Core. [A] Percent abundance of Herbs (Gramineae, Cyperceae, and
Compositae including Artemisia or sage), [B] percent abundance of montane forest Cedar types (Juniperus-Cupressus) and [C] the ratio of pollen to charcoal concentration [solid line]
(Heusser, 1995). [D] The 630 record of N. pachyderma (Hendy et al., 2002), [E] the NO3 concentration of the GISP2 ice core with the spline fit in a heavy black line (Mayewski et al.,
1993) and [F] the GISP2 6'30 record (Stuiver and Grootes, 2000). Gray dashed line marks the initiation of the Younger Dryas cooling event.

893, interpreted as a wildfire indicator (Heusser and Sirocko,
1997). This suggests rapid ecosystemic change in the wake of
major regional wildfires and associated landscape disturbance.
These changes are consistent with the record of wildfire from the
upper Arlington Canyon section and evidence for abrupt change in
island vegetation during the YD. Fuel build-up from Late Pleisto-
cene conifer forests and gradual drying through the Belling/
Allered are indicated by the expansion of oak starting at 16 ka
(Heusser and Sirocko, 1997) and would have contributed to the
intense nature of this conflagration. The deeply buried dark layer
(a sapropel) evident in the AC-003 section accumulated under wet
conditions that contributed to the anoxia necessary to preserve
the organic matter. Rapid deposition of sediments in the early YD
is also consistent with increased precipitation transferring sedi-
ment from the surrounding denuded landscape. When the AC-003
sequence is considered within the context of existing Late

Quaternary vegetation and fire records for the islands (Anderson,
2002; Pinter and Anderson, 2006; Firestone et al., 2007), it
appears that biomass burning at 13-12.9 ka was island-wide and
marks a major shift in vegetation and fire regime. The SBB record
extends the distribution of the biomass burning and associated
shift in vegetation regionally. Organic carbon burial rates in Santa
Barbara Basin increase at the beginning of the YD, a process linked
to increase in ballast minerals and higher sedimentation rates
(Nederbragt et al., 2008). Gradual increase in organic carbon
deposition may be related to sea-level rise as the margins of SBB
have been implicated as temporary storage areas (+200 years) for
sediments without significant ballast. However, the large increase
in organic carbon burial rates at the onset of the YD is also
consistent with mass sediment wasting of the landscape in the
wake of extensive biomass burning on the adjacent islands and
mainland.
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6. Discussion

Biological communities on islands are inherently fragile and
animal populations are vulnerable to extinction. This is because
breeding populations are small and isolated from mainland pop-
ulations. Ecological perturbations, whether through natural envi-
ronmental change, human-induced environmental catastrophes,
or direct hunting, will have far greater effects on island ecosys-
tems than on nearby, contemporaneous mainland faunas. Late
Pleistocene biological communities on Santarosae were no
exception. M. columbi was the only member of the mainland’s
diverse Rancholabrean fauna to colonize these offshore islands,
probably significantly before 47 ka (Agenbroad, 1998). M. exilis
resulted from evolution by natural selection in this insular
environment and in the absence of predators (Agenbroad, 2002b).
This species was highly adapted to this depauperate terrestrial
environment as evidenced by its survival and persistence during
the multiple abrupt warming and cooling episodes that marked
the Late Quaternary (Hendy and Kennett, 1999).

The available data are support for a M. exilis extinction at
~13-12.9 ka (Agenbroad et al., 2005). Gradual changes in sea-level
between 17.5 and 13 ka reduced island area by ~32%. The most
rapid landmass decrease is evident during the Belling/Allerad,
between 14.5 and 13.4 ka. If M. exilis populations were adapted to
the coastal lowlands of Santarosae then this would have had
a significant impact on the population (Agenbroad, 1998, 2002a).
However, only modest sea-level rise occurred across the Allerad-
YD boundary and fragmentation of island habitats through
formation of the four separate islands commenced later after
10.8 ka. Reductions in foraging range associated with sea-level rise
between 17.5 and 13 ka certainly would have reduced M. exilis
populations and increased their vulnerability to extinction.
However, the modest habitat loss across the Allersd-YD boundary
cannot explain the seemingly abrupt extinction at 13-12.9 ka.
Abrupt cooling evident in SBB ODP Site 893 is also an unlikely
explanation for M. exilis extinction at 13-12.9 ka because previous
cooling and warming episodes during the Late Quaternary were
equally abrupt.

The earliest evidence presently known for a human occupation
of Santarosae (at Arlington Springs) closely coincides with the last
evidence for M. exilis. This coincidence forms the basis for the
hypothesis that the extirpation of M. exilis was human induced
(Agenbroad et al., 2005). Human-induced extinction of the largest,
ecologically vulnerable, prey is well documented in similar island
settings and occurs with clear evidence for human colonization,
population increases, and dietary expansion (Anderson, 1989;
Steadman, 1995; Patton, 1996). In these cases the bones of target
species (e.g., Moa in New Zealand, Anderson, 1989) are found in
early colonization sites and several hundred years pass before these
animals were completely extirpated. This often occurs with clear
evidence for expanding agricultural populations.

The skill and technology needed to hunt large animals was
clearly present on the adjacent mainland between ~13.3 and
12.9 ka (Erlandson et al., 2007; Rondeau et al., 2007). Behavioral
ecological theory predicts that these large animals would have
been targeted when humans colonized these islands (Kennett,
2005, p. 220), but there is yet no direct evidence that these animals
were hunted. Orr (1968) argued for the coeval existence of M. exilis
and humans on Santarosae as early as 40,000 years ago. In a series
of controversial articles, Orr and Berger argued that the close
physical association of mammoth bones, crude stone tools and
“hearths” indicated a clear Pleistocene occupation of the island by
humans (Orr and Berger, 1966; Berger and Orr, 1966; Berger, 1980,
1982). Subsequent work suggested that the associations of flaked
tools and bones could have easily resulted from natural processes,
and some of the fire areas (hearths) may have been a product of

chemical weathering (Johnson, 1972). In fact, close to a century of
paleontological and archaeological work has failed to locate a single
M. exilis kill locality. Of the 140 Mammuthus localities identified in
a recent comprehensive survey of these islands (Agenbroad,
2002b), there are no reported bones with cut marks or human
artifacts associated with them. No early colonization sites con-
taining the bones of these animals have been identified. However,
because none of these localities has direct C dates the 140
mammoth localities recorded theoretically span a long period of
time (13 ka to >50 ka). If humans were recent occupants of the
Santarosae (13.1 ka), only a small number of Mammuthus speci-
mens would overlap with human presence. The taphonomy of
deposition is also against discovering kill sites. Bones in upland kill
sites would disintegrate rapidly unless they were rapidly rede-
posited, and if so, this would scatter artifact evidence widely.
However, the Clovis-like spear point technology present on the
California mainland has not been found on these islands. Even with
the problems associated with site burial or loss related to sea-level
rise (Kennett, 2005), the complete absence of evidence that these
animals were hunted is puzzling and currently inconsistent with
the human overkill hypothesis.

At present, the Arlington human skeletal material provides the
only direct evidence for human presence on Santarosae at ~13.1-
12.9 ka. The partial remains of this individual occur in a small
arroyo that filled with sediment during the YD then was later
exposed near the mouth of the modern Arlington drainage.
Although it is possible that Santarosae was permanently occupied
by this time there is currently no evidence for other archaeological
sites that would suggest a large population. The presence of
humans on this offshore island is unequivocal evidence that
peoples living along the mainland coast of western North America
possessed boats and advanced maritime technologies. If primary
settlements were located along the coast of Santarosae and were
submerged or destroyed during sea-level rise, this would suggest
a maritime adaptation rather than one focused on the hunting of
large game animals. The current absence of interior kill sites seems
consistent with this interpretation.

A possible gap in the record during much of the YD ends at
~12.2 ka with evidence for Paleoindian occupations of Cardwell
Bluffs and Daisy Cave on western Santarosae (San Miguel Island;
see Erlandson, 2007; Erlandson et al., in press). This time gap is
partly explained by fluctuations in the radiocarbon calibration
curve in the early YD, including a plateau of ~200 years
(Muscheler et al., 2008). These fluctuations can make events and
gaps in the record look more or less abrupt and calibrating
radiocarbon dates is essential (Bartlein et al., 1995). Regardless,
more extensive evidence for human occupation of Santarosae is
only seen in the proliferation of terminal Pleistocene and Early
Holocene shell middens between 10.2 and 9 ka—sites associated
with evidence for a maritime adaptation (Rick et al., 2005;
Erlandson et al., 2007). Solid evidence for human occupation of the
islands preceded the stabilization of sea-level and loss of coastal
habitat by ~4000 years, with numerous early sites found in caves,
near fresh water springs, and around toolstone sources that drew
maritime peoples away from now submerged shorelines. This
suggests that the evidence for earlier human occupation is not
entirely lost to Late Quaternary sea-level rise and coastal erosion.
Data from ODP Site 893 indicate that marine productivity
remained at least seasonally high along the California margin
during the YD and terrestrial climate records from North America
suggest that the early part of this interval was likewise seasonally
moist. The absence of evidence for a human presence on Santar-
osae is therefore unlikely to be a product of climate-driven
decreases in marine or terrestrial productivity.

Beyond Santarosae there is currently little evidence for
a substantial population in California during the YD (Jones et al.,
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2002; Erlandson et al., 2007). Clovis-like fluted points have been
identified at 51 locations (see Fig. 1a), representing nearly every
type of environmental setting—except the Channel Islands (Dillon,
2002; Rondeau et al., 2007). There remains some uncertainty about
the chronology of Clovis-like points in California. Only two sites,
Borax Lake (LAK-36; Meighan and Haynes, 1970) and Skyrocket
(CAL-629/630; Bieling et al., 1996) have produced Clovis-like points
stratigraphically below Early Holocene occupation levels. In both
cases, radiometric dating of these deposits is uncertain, but they
clearly pre-date Early Holocene materials based on superposition
(Skyrocket) and obsidian hydration measurements (Borax Lake). No
archaeological sites in mainland California have been convincingly
radiocarbon-dated between 12.9 and 12 ka and only a few date
between 12 and 11 ka. In contrast, more than 38 sites have
produced radiocarbon evidence for occupation between 10.5 and
9 ka (see Erlandson et al., 2007). The vast majority of these sites
provide no evidence for earlier Pleistocene occupation. The earliest
archaeological record from California is therefore marked by
a possible gap between the Late Pleistocene and the Early Holocene.
If the age of fluted projectile points in California equates with the
recently revised age for Clovis over North America (Waters and
Stafford, 2007, p. 1123) of ~13.3-12.9 ka, then this could represent
a depression in mainland human occupation that extends between
~12.9 and 10.5 ka. While the chronology of this hiatus remains
poorly defined, the time gap between the Clovis-like fluted point
tradition and Early Holocene records is widespread and remarkable
(Jones, 2007). Much more work is needed in California. We simply
point out that there is currently an absence of archaeological sites
dating to much of the YD and the millennium following it, which is
potentially consistent with broader-scale ecosystem disruption at
13-12.9 ka.

Wildfire, mass wasting, and reduction in forage at 13-12.9 ka
are possible mechanisms for abrupt M. exilis extinction on Santar-
osae, a scenario in which human hunters could still have played
some ‘coup de grace’ role. These intense wildfires occurred after
a substantial build-up of fuel from Late Pleistocene conifer forests
and in the context of regional drying that started ~ 16 ka. Human-
induced fires and associated habitat loss are among several inter-
linked mechanisms proposed for large herbivore extinction in
Madagascar (Burney, 1993; Burney et al., 2003). These extinctions
occurred in the Late Holocene (after 1.7 ka) in association with
expanding agricultural populations and clear human trans-
formation of the landscape. The purposeful use of fire for land
clearing is well known in agricultural societies (Posey, 1985;
Piperno et al., 1991; Smith, 2001; Kennett et al., 2006a,b). Hunter-
gatherers are known to use fire to alter landscapes for economic
purposes (Yen, 1989) and this was well documented historically in
California (Anderson, 2005). However, the apparent low human
population levels on Santarosae at ~13.1-12.9ka and major
conflagrations are generally inconsistent with resource manage-
ment and the hypothesis that these fires were of anthropogenic
origin (contra Pinter and Anderson, 2006).

The organic carbon-rich sediments at the base of the AC-003
sequence containing wildfire proxies co-occur with regional
evidence for wildfire and ecosystem disruption in the form of major
vegetation shifts and animal extinction on the islands and possibly
more broadly in southern California (Marcus and Berger, 1984). The
age of this deposit is equivalent (~13.0-12.9 ka) to the base of
a distinctive black layer (YDB) found broadly across North America
at 70 localities (Haynes, 2005, 2008). Dark sedimentary layers can
develop locally for a variety of natural and anthropogenic reasons
(see Quade et al., 1998), but this dark, geographically extensive
layer occurs directly above extinct Pleistocene animal remains
(Haynes, 2005, 2008). Clovis artifacts associated with the remains
of select fauna occur in terminal Pleistocene alluvial or spring
deposits and are also capped by this distinctive black sedimentary

layer at Blackwater Draw, NM, Murray Springs, AZ, Lehner, AZ, UP
Mammoth, Colby, and Domebo (Holiday, 1985; Taylor et al., 1996;
Haynes, 2005, 2007, 2008) and other Clovis-age sites (Lubbock
Lake, TX; Holiday, 1985). The base of this dark stratum at Murray
Springs (AZ, Clanton Ranch member—Stratum F1): is well dated to
between 13 and 12.9 ka; it marks a major and continent-wide
biostratigraphic change; and it serves as a major boundary with
Pleistocene fauna occurring directly below and never above this
easily discernable bed (Haynes, 2005). This black stratum (termed
the Black Mat) contains organic matter derived from oxidized plant
material and algae suggesting a shallow pond or marshy environ-
ment (Haynes, 2007, p. 45). Petrographic work indicates the pres-
ence of charcoal, vitreous carbon, vitrinite, and spores. Pyrolysis-
GC/MS analysis suggests that the organic matter was derived from
aromatic biomolecules typical of mature coals or burned wood
fragments (Haynes, 2007, p. 245, report by Stankiewicz and Tege-
laar). These characteristics are consistent with intense wildfires
indicated by the presence of soot in this same stratum (Firestone
et al., 2007). Hemispheric biomass burning is also indicated at the
onset of the YD by large increases in ammonium and nitrate values
in the Greenland GISP2 ice core (Mayewski et al., 1993, 1997; see
Fig. 6).

Two independent research groups have now identified peaks in
metallic microspherules at the base of this distinctive black layer
(YDB) at Murray Springs (Firestone et al., 2007; Haynes, 2008).
Preliminary work indicates that the abundance of microspherules at
Murray Springs and at many other localities in North America co-
occur with other apparent cosmic impact markers (e.g., above
background concentrations of iridium; Firestone et al., 2007).
Elevated iridium levels correlate with extensive wildfire at the K/T
boundary (Kéeberl, 2007, p. 33; Wolbach et al., 1985). The recog-
nition of mass extinction at the K/T boundary attributed to a major
extraterrestrial impact along with the presence of a significant
number of the same cosmic impact markers identified in the YDB
provide an empirical basis for hypothesizing that the massive North
American animal extinctions may have resulted from the direct
effects of a cosmic impact (shockwave, heat, flooding, and wildfires)
and subsequent cascading ecological changes associated with rapid
climate change. This viable and testable hypothesis seems consis-
tent with the evidence for wildfire, ecosystem disruption, animal
extinction, and human population reduction on the Channel Islands
and possibly more broadly in California. It is hypothesized that
wildfires were ignited broadly across the continent and resulted
from multiple aerial impacts that produced a severe radiation flux
represented by intense fireballs distributed widely (Firestone et al.,
2007). The evidence for biomass burning at the YDB in the Santa
Barbara channel region is consistent with the hypothesis of broad
continental biomass burning at this time. Furthermore the evidence
for such a conflagration on Santarosae Island, a relatively small and
isolated landmass supports the possibility that such an airburst
barrage included the southern California region.

7. Conclusions

A dark black, deeply buried organic carbon-rich layer in
Arlington Canyon (AC-003), dating to the Allered-YD boundary
(13-12.9ka), has produced high concentrations of charcoal,
“elongate” carbon particles, and carbon spherules indicative of
intense biomass burning on Santarosae at this time. This was fol-
lowed by landscape mass sediment wasting that continued into the
early YD. Near consistency of radiocarbon ages throughout much of
the ~5m sediment sequence indicates that these sediments
accumulated rapidly during the early YD. Later fires during this
interval are recorded by thin charcoal-rich layers also containing
charcoal, glass-like carbon, and “elongate” carbon particles,
although these materials could have been redeposited following
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the erosion of original YDB sediments located upslope or upstream.
It seems unlikely that a very small population of hunter-gather-
fisher peoples triggered these wildfires. The absence of a range of
other archaeological site types contemporary with the Arlington
human skeleton suggests this early human presence was small and
is inconsistent with extensive use of fire to transform landscapes
for subsistence purposes. The possible absence of humans on the
islands for 600-800 years following these wildfires is also incon-
sistent with anthropogenic burning. Finally, although there were
clearly episodic wildfires on the Northern Channel Islands
throughout the LGM and the Holocene, the intensity of the
conflagration at 12.9 ka suggests that a fundamentally different
process may have occurred at the YDB.

The last known occurrence of M. exilis on Santarosae is
13-12.9 ka (Agenbroad et al., 2005). M. exilis populations were
small and almost certainly would have contracted with coastal
plain habitat loss associated with sea-level rise between 19.5 and
13 ka (Agenbroad, 2002b). However, the fragmentation of Santar-
osae into its four modern islands did not occur until after the YD
(~10.8-9ka) and there were no abrupt losses of habitat at
13-12.9 ka to trigger final extinction. Abrupt cooling at the onset of
the YD in the SBB ODP Site 893 record is similar in magnitude to
earlier abrupt climatic episodes during the Late Quaternary and
thus does not help explain final extinction. The co-occurrence of
the first evidence for human exploration of Santarosae and/or the
terminal age of M. exilis is tantalizing. Human predation pressure or
anthropogenic ecosystem disruption is a plausible hypothesis in
this insular environment (Agenbroad et al., 2005; Kennett, 2005;
Pinter and Anderson, 2006). However, there currently is no
evidence for significant human presence on the island before 13.1-
12.9 ka. This near lack of evidence cannot simply be explained as
resulting from sea-level inundation of coastal plains. Humans were
clearly present on the Channel Islands and throughout California
between 13.1 and 12.9 ka. There is negligible evidence for human
populations on the islands or elsewhere in California during most of
the YD. This provides an empirical foundation for hypothesizing
that there were major reductions in human populations during the
YD. This hiatus is not easily explained by abrupt cooling given that
the average temperature drop was only a few degrees Celsius in
coastal California and particularly because marine conditions
remained relatively productive through this interval.

Wildfire and mass sediment wasting of the landscape in
Arlington Canyon are synchronous with evidence for wildfires at
Daisy Cave on San Miguel Island (Firestone et al., 2007) and “mega-
fires” elsewhere on Santarosae at ~13 ka (Pinter and Anderson,
2006). They also appear to be synchronous with a peak in the
charcoal/pollen ratio in the SBB ODP Site 893 interpreted inde-
pendently as a regional biomass burning event including the
adjacent mainland (Heusser and Sirocko, 1997). The distinctive dark
layer at AC-003 in Arlington Canyon also correlates in time with
other dark sedimentary layers distributed widely in North America
marking the Allerad-YD boundary (Haynes, 2008). Wildfire indi-
cators (e.g., soot, glass-like carbon, and carbon spherules) occur in
this layer with other exotic materials (e.g., magnetic spheres;
Firestone et al., 2007; Haynes, 2008). This is consistent with the
hypothesis that wildfires in southern California and elsewhere on
the continent were ignited by an intense radiation flux associated
with multiple airbursts resulting from a cosmic impact (Firestone
et al., 2007). Hemispheric wildfires also increase abruptly at the
beginning of the YD (Mayewski et al., 1993, 1997). The synchrony
and geographic extent for wildfire in North America at 13-12.9 ka is
inconsistent with human-induced fire, the growing evidence for
Pre-Clovis occupations of the continent (Gilbert et al., 2008; Goebel
et al., 2008), and the abrupt extinction of Mammuthus and addi-
tional Pleistocene animals. Based on current evidence, we argue
that the synchronous and abrupt nature of wildfire and Pleistocene

animal extinction on Santarosae and more broadly in North
America are more consistent with the YDB cosmic impact
hypothesis (Firestone et al, 2007) than any other hypotheses
explaining Late Pleistocene megafauna extinctions.
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